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The streamline patterns of some simple two-dimensional Stokes flows are studied and 
the results used both to understand and to predict the streamlines of flows in more 
complicated geometries, in particular the streamlines of flows that contain eddies or 
regions of closed streamlines. Initially, streamline patterns are studied locally, either 
around some special point, such as a stagnation point or a point where a streamline 
meets a wall, or in a special region, such as a corner. The use of these local analyses 
is illustrated by finding the streamlines for shear flow around a rotating cylinder; the 
illustration also shows how fluid in Stokes flow a n  be turned back on itself (' blocked '). 
The local analyses of flow in a corner are used to understand the eddy patterns that 
have been discovered in a variety of flows. The eddies occur in corner-like regions and 
in these regions the flow can be regarded as the superposition of two components. 
One component, the eddy flow, is the result of flow outside the corner stirring the fluid 
in the corner, while the other is the direct result of local conditions in the oorner. 
The competition between these two components determines whether eddies actually 
appear in a given flow. Finally, the approach developed here is applied to a new flow 
situation, namely a shear flow which is bounded by a moving wall and which contains 
a stationary cylinder touching the wall. The streamlines deduced for different ratios 
of the shear strength to the wall velocity show both new eddy patterns and unexpected 
regions of blocked flow. 

1. Introduction 

governed by the Stokes equations of motion, 
For flow at very low Reynolds number, the velocity field u and pressure field p are 

-Vp+pVau 5 0 and V.u = 0. 

Closed-form solutions of these equations have been found for many flow domains, 
and, although often these solutions have been available for some time, interest in 
them has not subsided. For example, the stream function for axisymmetric flow past 
two spheres was first derived by Stimson & Jeffery (1926), and used by them to cal- 
culate the forces acting on the spheres. There matters rested until Davis et al. (1976) 
plotted the streamlines of the flow. They found that when the gap separating the 
two spheres is reduced below some critical value, eddies attached to the spheres appear 
in the gap, filling it to an extent determined by its size. The work of Davis et al. was 
influenced by two factors which did not emerge until long after Stimson & Jeffery 
had published their solution. The first factor waa the availability of computers whioh 
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made possible numerical calculations that were too tedious for anyone of Jeffery’s 
time to complete; the second factor was the incentive provided by the knowledge 
that eddies could exist in Stokes flows. Both of these factors are relevant to the present 
work. 

Dean (1944) was the first to discover a Stokes flow which contained an eddy. The 
geometry he chose for his flow domain was a very special one, however, being a plane 
boundary that contained a projecting wall leaning over a trough, and the discovery 
had no air of great generality. Moffatt (1964a) established the idea that many solutions 
of the Stokes equations might contain regions of eddying flow by showing that 
a solution due to Dean & Montagnon (1949) for flow in a two-dimensional corner 
described a sequence of eddies. Moffatt did not suggest, however, that every corner 
region would contain eddies, something Schubert (1967) and Liu & Joseph (1977) 
were careful to underline, because there remained the possibility that some agency 
localized in the corner could affect the flow. Moffatt also observed that even for a 
flow which has a high Reynolds number based on its overall size, it  is possible for low- 
Reynolds-number eddies to exist in a corner, but in fact developments of Moffatt’s 
idea have almost all been in the context of flows with a small overall Reynolds number. 
In  our development of Moffatt’s idea, we modify his original solution with a view to 
understanding the intriguing eddy patterns discovered by Davis & O’Neill (1977) 
and Dorrepaal & O’Neill(l979). 

Although determining the streamlines of a flow requires numerical computation, 
it need not be simply an exercise in computer programming, because often the general 
disposition of the streamlines is of more interest than their exact shapes, making a 
great deal of the computation unnecessary. Moreover, there can be large-scale features 
of the streamline pattern which are difficult to resolve just relying on a computer. 
Here streamline patterns are deduced by combining numerical calculations with a 
number of local analyses of the flow near certain special points or in special regions, 
the local analyses being based on the principles of ‘matched inner and outer approxi- 
mations’ (Van Dyke 1975). The flow around any given point can be described by an 
inner approximation valid in some neighbourhood of the point and an outer approxi- 
mation valid further away from the point, the inner approximation being determined 
partly by local conditions and partly by matching it to the outer approximation in 
some overlap region. Since the Stokes equations are of elliptic type, we must expect 
that for a general point in the flow the inner approximation will be largely determined 
by the matching requirement and local conditions will play only a secondary role. 
For a few special points, however, the local conditions will dominate the inner approxi- 
mation sufficiently to allow information to be deduced which is independent, at  
least in its qualitative aspects, of the outer flow. For example, Moffatt’s ( 1 9 6 4 ~ )  eddy 
solution is an approximation which is valid in a special region, namely, a corner, 
and it provides the qualitative information that eddies can exist in a corner flow; 
it does not, however, provide quantitative information about the strengths of the 
eddies because this can come only from a matching with some particular outer flow, 
A note of caution on the exploitation of inner approximations has been struck by 
Moffatt & Duffy (1980), who have solved two problems in which inner approximations 
break down in ways that are quite subtle; fortunately, no such difficulties arise in 
the present work. 

The flows studied in $ 5  show the limitations of using a computer to plot stream- 
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lines; the unusual and complicated structures of these flows would be difficult to 
resolve without using the ideas developed here. Some of the results in 4 2 were anti- 
cipated by Martin (1969), who had the same aim as the present one, namely supple- 
menting numerical calculations. A physical feeling for the flow behaviour described 
here can be obtained by appealing to the theorem that of all flow fields satisfying a 
given set of boundary conditions it is the one that also obeys the Stokes equations 
that has the lowest rate of energy dissipation (Batchelor 1967, p. 227). This theorem 
applies to the flow globally and can be applied locally only with caution; nevertheless 
it is useful to think of regions of closed streamlines, particularly eddies, as a way of 
approximating a series of rigid-body rotations which are preferred because they dissi- 
pate less energy than other kinematically possible flows which require more straining. 

The flow fields studied in this paper were chosen bearing two themes in mind: tho 
presence of closed streamlines (eddies being the main special case) and the division 
of the flow into distinct regions, the two types of behaviour often occurring together. 
Looking back over earlier investigations, we can see these themes in other flows. One 
of the simplest flows containing closed streamlines is that produced by a point force 
directed perpendicular to a rigid plane (Lorentz 1896; Blake 1971; Aderogba & Blake 
1978; Lighthill 1978, 0 4.7). A point force in unbounded fluid produces a flow in which 
all streamlines are open and there is an infinite flux of fluid in the direction of the force; 
when a plane is present, however, the streamlines are all closed and the net flux is 
zero. The flow does not divide into regions. One which does is the two-dimensional 
flow in the annular region between two cylinders (Wannier 1950; Bentwich & Elata 
1965). If the inner cylinder is sufficiently small and eccentrically placed, the flow 
contains two regions: one region surrounds the inner cylinder and the other clings to 
the outer cylinder a t  the widest section of the gap. As a final example, we consider 
the flow produced by a localized disturbance between two infinite plates (Moffatt 
1964a; Pan & Acrivos 1967). If the flow produced by the disturbance is two- 
dimensional, then far from the disturbance, the flow decays by generating a sequence 
of eddies which extends to infinity. Thus although eddies are easiest to find in corner 
regions, they can fill up even infinite regions of fluid. If the Aow is three-dimensional, 
eddies are not always found, but there do seem to be closed streamlines. Their 
presence in the flow is associated with a paradoxical result found by Liron (1978). He 
calculated the volume flux of fluid produced by a point force directed parallel to a 
single infinite plane. The flux is a finite quantity. If, however, the fluid is bounded 
by a second plane, parallel to the first, the volume flux is zero no matter how far 
away the second plane is from the point force and the first plane. 

Two-dimensional flow fields can be described by a stream function $, defined in 
polar co-ordinates (r,  0 )  by 

U, = r-la$/aO and uo = -a$/&. 
The stream function satisfies the biharmonic equation, which can be solved by separa- 
tion of variables. The solutions for $ and the corresponding pressure field can be 
put into three groups depending upon the value of a complex number A, and they 
are given now for later use. 

(a) A # 0,1 ,2:  

$ = +(A eik@ + Bei(a-zp) and p = 4p(A - 1) rA-2iBef(*-zp, (1.1 a, b )  
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FIGURE 1. Flows near a stagnation point. (a) 151 > !el ; ( b )  161 c (el, the smaller 
angle between the stegnation-point streamlines is - arcsin IC/el. 

or equivalently 
$ = (A+ + B++2) eiu and p = 4p(h + 1) r\iBefu. 

(b) Special cam h = 0,1,2: 

$ = A eau + C8 + D and p = 4pr4iA eau; 
$ = r(Aeu+BOe@) and p = 2pr-'Be", 

or alternatively 
$ = (Ar + Br log r )  eie and p = - 2pr-"iBei@; 

yF = r2(A ea@ + C8 + D )  and p = 4pC log r.  

(0 )  Solution independent of 8 
yF = Aralogr+Blogr+Cra+D and p = -4pA8. 

(1.2a, b )  

(1.30, b)  

2. Special points in the flow 
The position in a flow field of a special point, such as a stagnation point, is deter- 

mined by the entire flow, but by assuming that the position is known, we can use a 
local analysis to deduce qualitative information about the flow near the special point. 
We now describe those local analyses of two-dimensional flow that are relevant to the 
present work. 

2.1. Ieolated stagnut&m point 

Given a stagnation point in the interior of the fluid, we can use it &B the origin for 
polar oo-ordinates (r, 8)  or Cartesian co-ordinates (2, y )  and write the stream function 
for the flow m 

9 = rr(t;+esin28) = t ; ( ~ 2 + + ~ ) + 2 e q ,  

where t; and e are the vorticity and the rate of strain evaluated at the stagnation point. 
The possible streamline patterns are shown in figure 1. The pattern in figure l(a) corree- 
ponds to an extremum in $ and will be called a centre stagnation point, while that in 
figure l(b) corresponds to a saddle (stagnation) point. Todecide between them for some 
given stream function @(& q) ,  we evaluate the quantity 

(2.1) 
at the stagnation point (where $( = +,, = 0). It is positive for an extremum and 
negative for a saddle point (Burkill 1962, $8.8). 

$&, - G, = 4 ( P  - ea) 
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FIQTJRE 2. Streamlines near a point of zero tangential stress. 
(a) TZ = 1, (b)  s = 2, y = arctan (3 cot /?). 

2.2. Point of zero tangential stress on a boundary 

The point at which one or more streamlines intersect a rigid boundary is a point of 
zero tangential stress. The case of one streamline meeting a wall was analysed by 
Batchelor (1967, $4.8) and Michael & O’Neill (1977), who concluded that the 
streamline could meet the wall a t  any angle. Schubert (1968) and Dandapat & Gupta 
(1978) offered an alternative analysis in which they suggested that when a stream- 
line meets a rigid wall at  an angle /3 (figure 2a), the flow must be described by the 
general solution (1.1 a )  with the constants taking different values on either side of the 
dividing streamline 8 = 8. They were then left with eight unknown (real) constants 
and the power h to determine. They obtained an eigenvalue problem for A by deriving 
eight homogeneous equations for the constants. A s  well as showing that h could be 
any integer, they obtained for i t  a non-integral value which depended upon B. This 
last value is, however, spurious because there is a ninth equation for the eight con- 
stants, obtained by requiring that the velocity tangential to the streamline 8 = a be 
continuous; this equation is independent of the other eight and makes the system 
over-determined unless some of the equations are satisfied trivially. If A is an integer, 
the over-determinacy of the system is relieved and the constants have the same values 
on either side of 8 = p, but the non-integral value of h does not achieve this. In  what 
follows, then, we shall assume one form of solution for all values of 6. 

We now turn to the case in which n streamlines meet a wall a t  the same point, the 
generalization from one streamline being prompted by a Aow discussed in $ 5  in 
which two streamlines meet a wall. The stream function given by Michael & O’Neill 
(1977) for the local flow near a point of zero tangential stress can be written 

cos (n+ 2) 8- cosn8 nsin (n+ 2) 8- (n+ 2) sinn8 
cos (n+ 218- cosnp-nsin (n + 2 ) ~ -  (n + 2) sinnp 

$ = 

where n is an integer (determined by the outer flow) and p is the angle between one of 
the streamlines and the wall. In  this form, (2.2) describes a ‘fan’ of n streamlines 
meeting the wall a t  r = 0, except in one special case when the number is n- 1; we 
show this by counting the zeros of the term in square brackets, ignoring 8 = 0,n. 
The factors 

cos (n+ 2) 8- cosn8 and nsin (n + 2) 8- (n+ 2) sin n8 

have, respectively, a zero and an extremum when 

8 = In/(n+1), where 2 = 1,2, ..., n. 
XI PLY 96 
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tc) 

C F  (&I 
FIGURE 3. Conjectured waya in which a fluid flow might be turned back on itself. 

Consecutive extrema of the second factor have opposite signs, implying that it has 
n - 1 zeros. A linear combination of the two factors has n zeros except when 

nsin(n+2),8-(n+2)sinn,8 = 0; 

in this special case there are n - 1 zeros and the tangential shear stress is zero every- 
where on the wall, not just at r = 0. 

The particular cases n = 1 and n = 2 are depicted in figure 2. The case n = 2 illus- 
trates severaI points which are general. The outer flow does not determine the angles 
made by the two streamlines independently; if one streamline makes an angle 8, 
the other must make an angle y = arctan (3 cot/?). Consequently, for the symmetric 
flow studied in Q 5 we must have /? = arctan (3 cot /?) = +r. The special case of n - 1 
streamlines is the limit ,8 + 0 and y -+ in or vice versa. 

2.3. Zero-velocity atreamlines in regim of blocked $ow 
Regions of ‘blocked’ flow, in which fluid enters from infinity, turns around and flows 
back in the direction it came from, are found in several of the flows studied later, and 
this leads us to investigate the streamline patterns associated with such behaviour. 
Four apparent possibilities for blocked flow are shown in figure 3. The &st two are 
based on the fact that, in a simple shear flow, the streamline that separates fluid 
flowing in one direction from fluid flowing in the other is a streamline with zero velocity 
at all points along it; if we assume that such a streamline can persist in a ‘blocking’ 
situation, it could either simply come to an end (figure 3a) or intersect an eddy (figure 
3b) .  If no zero-velocity streamline is present, then the turning-back motion could be 
similar at all points (figure 3 c) or the fluid could circle around a region of closed stream- 
lines, the boundaries of which asymptote together at infinity (figure 3 4 .  

We now show that the first two patterns are not possible because no streamfunction 
can be found for local flow around the tip of a zero-velocity streamline. The method 
is similar to one used by Martin (1969) who showed that three streamIines could not 
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meet at  a point. A zero-velocity streamline is equivalent to a rigid plate with the 
additional constraint that the stress across it must be continuous. Michael & O'Neill 
(1977) show that the flow around the end of a rigid plate is described by the stream 
function 

@ = dm{A[cos &me- COB (Qm - 2) 81 + E[(Qm - 2) sin Qm8- Qmsin (Qm- 2) 811, (2.3) 

where m = 3,5,6,7,8,  .... The line 8 = 0 is the zero-velocity Streamline, but if m is 
even the line 8 = 7~ is also a zero-velocity streamline (cf. last section) contradicting 
our assumption that we are at the tip of this streamline. Therefore m must be odd. 
The pressure field associated with (2.3) is 

p = - 4p(4m- 1) &-2[A sin (im- 2) 8 -  QmEcos (4m-2) 81. 

Putting 8 = 0,277 in this expression we find that the pressure is discontinuous across 
8 = 0 when m is odd unless E = 0. But setting E = 0 in (2.3) restricts us to flow fields 
which are symmetric about 8 = 0 ,n  and which have 8 = IT a streamline (but not a 
zero-velocity one). We cannot build up the flow patterns shown in figure 3 (a)  and (b) 
from these flow fields. Thus regions of blocked flow must look like figure 3 (c) and ( d ) .  

3. The streamlines around a cylinder rotating in a shear flow 
If a cylinder of unit radius is placed on the zero-velocity streamline of a shear flow 

of strength K and rotated at  an angular velocity Q, the streamlines of the various 
flows obtained can be deduced without detailed numerical calculation by using the 
results of $2.1; the results provide simple examples of blocked flow and regions of 
closed streamlines. The stream function for the flow is (Bretherton 1962) 

$ = - Rlogr + $ ~ [ 2 r ~ s i n ~ 8 +  (2 -r2) cos 28- 2logr - 13 ( 3 . 1 ~ )  

= f ~ [ 2 r ~ s i n ~ 8 + ( 2 - r - ~ ) c o s 2 8 - 2 w l o g r -  13, (3 . lb)  

where w = 1 + ~ Q / K .  We first find the stagnation points of the flow. In Cartesian co- 
ordinates x = r cos 8 and y = r sin 0 there are saddle stagnation points at  

and 

We also need the asymptotic form far from the cylinder of the streamline $ = $o. 
Provided w > 0, i t  is 

(3.2) y 2  = 0 log 2 - 4$o/K - 4 + o(y2/X2). 

There are five cases to consider (cf. Robertson & Acrivos 1970). 

3.1. Cylinder rotating against shear, w > 1 

When w > 1,  only the stagnation points on the y axis are in the fluid. Between the 
stagnation points and the cylinder, the fluid is rotating with the cylinder, while 
further away the streamlines are going to infinity according to the asymptotic relation 
(3.2). From these considerations, the streamline pattern can be drawn as shown in 
figure 4(a) .  Note that the region of blocked fluid is an example of the conjectured 
figure 3 (c), and the region of closed streamlines is rotating against the shear flow. 

11-2 
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FIQWRE 4. Streamlines around a rotating cylinder in shear flow. (a) w > 1, cylinder rotath 
against shear; ( b )  w = 1 ,  cylinder stationary: (c) 0 < w < 1 ,  cylinder rotating slower than 
freely suspended one; (d)  w = 0, freely suspended cylinder; (e) w < 0, cylinder rotating f& 
than IL freely suspended one. 
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3.2. Stationary cylinder, w = 1 

All points on the cylinder are now stagnation points. It is possible, therefore, for 
streamlines to meet the cylinder a t  points of zero tangential stress. We test for this 
by calculating P$/8r2 on r = 1 and find it is zero at 8 = 5 8.. Again remembering 
the asymptotic form (3.2),  we obtain figure 4(b). 

3.3. Cylinder rotating slower than a freely suspended one, 0 < w < 1 

Now it is the stagnation point on the x axis which is outside the cylinder and we obtain 
the flow shown in figure 4(c). The region of closed streamlines around the cylinder is 
now rotating in the same sense as the vorticity of the shear flow, but more slowly. 

3.4. Freely suspended cylinder, w = 0 
This case was studied by Cox, Zia & Mason (1968); the streamlines are drawn in 
figure 4(d).  There are no stagnation points in the flow and there is no region of fluid 
being blocked by the cylinder. The region of closed streamlines around the cylinder 
now extends to infinity, where its boundaries asymptote together and provide an 
example of the asymptotic behaviour suggested in figure 3 ( d ) .  The transfer of heat 
across this flow was studied by Nir & Acrivos (1976) who found that at  high PBclet 
number the presence of closed streamlines had an important influence on the magni- 
tude of the heat flux. 

3.5. Cylinder rotating faster than a freely suspended one, w < 0 

All streamlines are now closed; see figure 4 (e ) .  

4. Eddies in corner-like regions 
Two approaches have been used to study the ways in which eddies can form in Stokes 

flow. The first derives an inner approximation for flow in a corner region and the 
second analyses the complete solution of a fully-specified problem. The first approach 
started with Moffatt ( 1 9 6 4 ~ )  and Lugt & Schwiderski (1965), who independently 
studied two-dimensional flow between two rigid plane walls, and it has been extended 
by Schwiderski, Lugt & Ugincius (1966), Wakiya (1976) and Lin & Joseph (1978), 
who all studied flow in a conical corner, and by Hynes (1978), who studied the flow 
between two conical surfaces which share a common vertex. The second approach, 
based on globally valid solutions, was used by Moffatt (1964b) to complement the 
local analysis of Moffatt (1964a). By devising a complete problem that he could solve, 
Moffatt showed explicitly how a globally valid solution asymptoted to the eigen- 
solutions of his inner analysis. Of the later work that has followed this second approach, 
we have selected three papers for further study here: Schubert (l967), Davis & O’Neill 
(1977) and Dorrepaal & O’Neill (1970). 

Schubert ( 1967) solved several problems in the two-dimensional flow of viscous 
fluid bounded by a cylinder touching a plane. One problem was that of shear flow over 
a stationary boundary; from his solution, Schubert found that the flow in the cusp 
between the cylinder and the plane consisted of eddies. This result suggested that 
Moffatt’s ( 1 9 6 4 ~ )  analysis might be used qualitatively to understand the flow in any 
corner-like region. Schubert also found the flow produced when the plane moved 



324 D. J .  Jeffrey and J .  D. Sherwood 

0 0.2 0.4 0.6 0.8 1 .o 1.2 
X 

FIGWE: 6. Shear flow over a cylinder which almost touches a plane (Davis & O’Neill 1977). 
Fluid peesing under the cylinder leaves the gap region by pessing around the projeoting eddies. 

FIQURE 6. Streaming flow past two cylinders (Dorrepaal & O’Neill 1979). 
The eddy in the middle of the gap is not attached to a wall. 

parallel to itself and the cylinder was held stationary. He pointed out that no eddies 
existed in this flow, making the point that Moffatt (1964a) had not intended to 
suggest that eddies form in every corner-like region in every flow. Davis & O’Neill 
(1977) modified Schubert’s flow domain by separating the cylinder from the plane 80 

that fluid could flow under the cylinder. They solved for the shear flow over the 
cylinder and plane, and discovered curious eddy patterns such as the one shown in 
figure 6. This pattern is interesting because the number of eddies is finite and because 
the route followed by the fluid emerging from the gap between the cylinder and the plane 
is 80 circuitous. Finally, Dorrepaal & O’Neill(l979) studied streaming flow past two 
cylinders which almost touched, and found eddy patterm such as that shown in figure 6. 
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The new feature of this pattern is the way in which there is 'free' eddy in the flow 
not attached to any wall. 

Moffatt (19644 gave antisymmetric and symmetric solutions for flow between two 
plane walls meeting at an angle 201. The stream function for the flow that is anti- 
symmetric about the centre-line of the corner is 

$ = ArA [COB AB cos ( A  - 2) a - cos ( A  - 2) B cos ha], (4.1) 
where A is an eigenvalue satisfying sin 2(A - 1) a = - ( A  - 1) sin 201. It is complex for 
2a < 146O, which indicates that eddies are present in the flow. The stream function 
for the symmetric flow is 

$ = BP [sin v0 sin (v - 2) a - sin (v  - 2) B sin va] ,  

where v satisfies sin 2(v - 1 ) a = + (v - 1) sin 2a and is complex, again indicating eddies, 
for 2a < 159' (Moffatt & Duffy 1980 have corrected the figure 156" given in Moffatt 
1964~). The factors A and B are arbitrary scale factors which would be determined 
by matching with some outer flow; for our purposes they can be set to 1. The patterns 
corresponding to the lowest eigenvalues for h and v are shown in figures 7 (a)  and 8 (a)  
respectively, having been plotted using a computer graphics package. The stagnation 
points are indicated as well as the streamlines. 

The antisymmetric case helps us understand the flow in figure 5.  The gap between 
the cylinder and the plane allows fluid to enter the corner region and therefore acts 
as a source. This leads us to guess that patterns similar to figure 5 can be obtained 
by adding to (4.1) the stream function for the flow produced by a line source at the 
vertex of the corner. If the source has strength Q, the new stream function is 

28 cos 2a - sin 28 
2a cos 2a - sin 2a' 4 = r* [ C O S ~ ~ C O S  (A -  2) a- COB ( A  - 2) BCOSACZ] + Q (4.2) 

The streamlines and stagnation points for a particular value of Q are shown in figure 
7(b )  (also plotted using computer graphics). The actual numerical value of Q is not 
significant because it depends upon arbitrary choices of scale. As an aid to under- 
standing the computer picture, a schematic diagram which uses distorted scales is 
shown in figure 7 ( c ) .  It should be noted that eddies are absent from points of the 
flow sufficiently near the source and also that eddies project into the flow alternately 
from the upper and lower walls. The interpretation of figure 7 ( b )  was verified by 
calculating separately the positions of the special points of 5 2. The critical distance 
from the vertex below which no special points can be found is proportional to Q p ,  

where p = 1/Re (A}.  To understand this flow in a way that can be transferred to other 
situations, we note that the two terms in (4.2) correspond to different mechanisms. 
The eddy term is a result of flow outside the corner stirring the fluid in the corner and 
it becomes more dominant the further one is from the vertex; it is an eigensolution 
in the terminology of Van Dyke (1975, 0 4.5). The source term is the result of a local 
disturbance centred on the vertex and it always dominates the eddy flow near enough 
to the corner; we can contrast it  with the eigensolution by calling it 'locally forced'. 
The relative strengths of these components determine the distance from the corner 
at which the eddies first appear, but it should be noted that, because the corner in 
figure 7 is infinite, it  will always be possible to find some distance at  which eddies 
appear. 
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FIGURE 7. Antisymmetric eddies and a source flow for a = +gr and A = 4.216 + 2.229C (a) Q = 0, 
(a) Q = 6, ( 0 )  Schematic picture of flow. Centre stagnation points are marked by dots. 

We now relate these observations to figure 6 which contains the additional featurea 
that the number of eddies is finite (and may be zero) and the size of the corner ie 
finite. The eddy component of the flow is driven by the fluid which must flow upwards 
to clear the cylinder. This stirring has a magnitude determined by the complete flow 
and the geometry of the flow domain, but it will be practically constant over the 
range of small gap widths that we are considering. On the other hand, the strength 
of the source (the amount of fluid flowing through the gap) is sensitive to the gap 
width, being proportional, asymptotically, to hf, where h is the gap width. This can 
be predicted from lubrication theory for flow through a narrow passage or verified 
directly from the complete solution (Davis & O’Neill 1977). Thus there is a minimum 
distance from the gap at which eddies can appear, and this distance increases with th 
gap width. There is also a maximum distance a t  which eddies can be found. This ia 
the distance at which the inner approximation ceases to be applicable because of thd 
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FIGURE 8. Symmetric corner eddies and so~irce flow for a = -lLgr and v = 7.500 + 2.74%. 
(a) Q = 0, (a) Q = 50, (c) Q = 2.5 x lo5. (d )  Schematic picture of flow. 
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finite size of the corner, and where there is a transition to the outer flow. Consequently, 
a finite number of eddies form between a minimum and a maximum distance from 
the gap. When the source becomes too strong, the minimum distance coincides with 
the maximum one and no eddies at all are formed. 

The path just followed in our study of the results of Davis & O’Neill (1977) can be 
retraced for the work of Dorrepaal & O’Neill (1979). The important difference for 
the interpretation of Dorrepaal & O’Neill’s work is the symmetry of their problem: 
both their corner region and their outer flow are symmetric about the perpendicular 
bisector of the line joining the centres of the cylinders. Consequently, our starting 
point must be the case of symmetric eddies in a corner, to which we add once again 
the flow produced by a line source at the vertex of the corner. The stream function is 

28 cos 2a - sin 20 
261 cos 201 - sin 2a‘ + = ry [sin v8 sin (v - 2) a - sin (v - 2) 9 sin va] + Q (4.3) 

The streamline patterns corresponding to two different values of Q are shown in 
figure 8(b )  and (c). The pattern now alternates between a pair of eddies projecting 
from either wall and a pair of free eddies in the centre of the flow, as shown in figure 
8(d) ,  where distorted scales are used to clarify the pattern. It is worth noting that the 
free eddies contain centre stagnation points within them (marked by dots) and saddle 
points on their bounding streamline (where i t  meets the centre-line). 

So far we have used existing complete solutions as inspirations for our local corner 
analyses. We wish now to reverse this process and synthesize a corner flow with a 
view to inspiring a new complete problem in Stokes flow. Having posed such a problem 
we shall investigate it in the next section. The corner flow we choose is one studied 
by Taylor (1962). The flow is produced by one wall sliding parallel to itself at speed V.  
The stream function for this flow, combined with antisymmetric eddies, is 

II. = T* [COSAO cos (A- 2) 01- cos (A- 2) Ocos Aa]  

2 a  - sin 2a I. (4.4) 
as ina  cose - esin 8 cosa a cosa sin 8 - 8 cos 8 sin a 

2a + sin 201 
- + vr[ 

Streamlines, as plotted by a computer, are shown in figure 9(a), while the overall 
pattern is shown schematically in figure 9(b). It is of incidental interest that, as V 
increases, the eddy attached to the wall disappears before the free eddy does, even 
though the free eddy is closer to the vertex of the corner. In the next section, we find 
a complete Stokes flow which contains similar patterns. 

5. Shear flow over a cylinder touching a moving wall 
If a stationary cylinder touches a moving plane wall, the corner region between 

them is a candidate for displaying the patterns predicted in figure 9.The stream function 
was given by Schubert (1967), who showed that there were no eddies in the flow. The 
reaaon for this is that the streamlines are determined by the geometry of the flow 
domain and not the speed of the wall V ,  and it happens that, in the corner, the locally 
forced flow is so strong compared with the eddy flow that it prevents eddies forming. 
If we wish to observe eddies we must increase the strength of the outer, stirring, flow. 
Possible ways to do this are to alter the geometry of the flow domain or to add to the 
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FIGURE 9. Antisymmetric eddies and flow produced by sliding u d l .  ( a )  1’ = 3 x lo4, ( b )  Sclieinatic 
picture of flow. Note that successive free eddies meet at a saddle stagnation point. 

moving-wall flow another flow which has a stirring component, but no locally forced 
component, in the corner. We can realize the latter possibility using the stream 
function for shear flow over a stationary cylinder and plane which was also giren by 
Schubert (1967). 

We take Cartesian co-ordinates (a, y) such that y = 0 is the plane of the moving 
wall, and define tangent-circle co-ordinates ( 5 , ~ )  by 

5 = y/(z2 + y2) and 7 = z / ( x 2  + y2). 

The surface of the cylinder, which has unit diameter, is given by 5 = 1. If the shear 
flow has strength K and the wall has velocity V ,  the stream function for the conibined 
flow is (Schubert 1967; Davis & O’Xeill 1977) 

s (sinh s t  - sg cosh SE) + (e-8 sinh s - s + s2) 6 sinh s5 
cossqds. (5.1) 

The first term is the stream function for the moving-wall flow; it is zero on 5 = 0 
(the plane) and 5 = 1 (the cylinder) and at  infinity it describes a uniform stream. 
The next term describes the undisturbed shear flow and the final integral term 
describes the disturbance flow produced by the cylinder. 

. I 0  sinh2 s - s2 
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FIQIJRE 10. Computer plot of shear flow over a cylinder touching a moving wall for 
K / V  = 200. 

In the region between the cylinder and the plane, where 7 >> 1, the amount of 
computation can be reduced by using an alternative form for (5.1): 

a, (( 1 - 6 )  sin hag-+- EsinA,( 1 - f )  
exp ( - Aal) E(5 - 1 l2 

t2 + l2 n- 1 1 + cos A, $ = V--&m(Ea+q2)-1Re 

where A, and pa are tabulated zeros of sin z & z (Schubert 1967; Davis & O'Neill 1977). 
We use a two-term approximation to (5.2) and a computer graphics package to plot 
the eddy motion in the corner, but the overall flow pattern is more easily deduced 
using the methods of $5 2 and 3. 

When B and K are both positive, the velocity at large distances from the cylinder 
increases monotonically away from the plane and the flow is not too complicated. 
When K / V  is zero there are no eddies in the flow and so the ratio of stirring flow to 
local flow is increased until K / V  = 31, when the first eddy appears in the corner 
attached to the cylinder. A free eddy appears in the flow when K/V = 181. In figure 
10, the streamlines are shown for K / V  = 200.0; their pattern is similar to that of 
figure 9(b). I n  figure 10, the wall eddy appeared before the free eddy, which is the only 
obvious qualitative change from figure 9. The flow outside the corner shows no unusual 
features. 

The case in which V and K have different signs is more complicated and displays 
all the types of flow discussed in 8 2. The undisturbed flow is described by the stream 
function $ = V y  + ~ K Y ~ .  The zero-velocity streamline is a t  y = - V/K, and at that 
height $ = - 4V2/,. Above this there is a @ = 0 streamline at y = - ~ V / K ,  i.e. the 
volume fluxes of fluid flowing to left and right below this height are equal. These 
streamlines are convenient ones to refer to when describing the flow in the presence 
of the cylinder. We shall follow the changes in the flow pattern as the ratio I K / V ~  
increases from zero. For definiteness we shall say that K is positive and V negative. 
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6.1. WeaksheurJEow, 0 < - K / V ~  1 

The undisturbed zero-velocity streamline would be well above the cylinder, but i t  
disappears in the presence of the cylinder however small K /  V is, the flow possessing 
instead a region of blocked fluid. To obtain more information about the flow, we 
expand (5.1) using K / V  as a small parameter. Thus we can show that there is a saddle 
stagnation point on they  axis (7 = 0) a t  

y = 5-1 = - V / K  + O(K/V) ,  
and at this point the stream function has the value 

$ =  --- "(I + ~ K / v + o ( K ' / v ' ) ) .  
2 K  

Since V < 0, we see that IS1 is less than +V'/K, which means that not all the fluid 
flowing towards the cylinder passes over it. Far from the cylinder, when x2+ y' 1, 
the asymptotic form of $ is 

(5.3) 
where 

$ = V y  -k BKY' - 2( V -k A K )  y'/(X' -k y') -k o ( ( X '  f Y')-l), 

00 s(e+ sinh s - s + s2) 
ds = 0.72. ,, sinh's-s2 

The streamlines emanating from the stagnation-point asymptote to 

y = - v / K  2( - V / K ) * .  

The region of blocked flow is of the figure 3(c) type and without further calculation we 
can sketch figure 1 l ( a )  for the flow pattern. The relative dimensions in the sketch are 
based on - K / V  = 0-05. 

As - K /  V increases in value, the region of blocked fluid increases in size. In addition 
the y? = 0 streamline comes closer to the cylinder, with the result that less fluid 
passes the cylinder and most of it is turned back. Eventually the IC. = 0 streamline 
touches the cylinder and all the fluid approaching the cylinder along the wall is turned 
back. We can calculate this critical value of K/Vas follows. 

5.2.  Critical value of K /  V when @ = 0 streamline touches the cylinder 
The I) = 0 streamline will by symmetry meet the cylinder at x = O  and when this 
happens we shall have a point of zero tangential stress. The top of the cylinder is 
6 = 1, 7 = 0 and so we calculate P@/a% at this point and find the value of V / K  for 
which this equals zero. The result is 

* s cosh s - sinh s 
sds = - 1.998, 

V 
K 

i.e. K /  V = - 0.5005. The streamlines are sketched in figure 1 1  ( b ) ,  where it can be seen 
that the flow at the top of the cylinder is an example of figure 2 ( b )  in the special cme 

As the value of - K / V  is increased further the @ = 0 streamline breaks, and its 
two halves spring from points lower down on the cylinder. The next critical value of 
- K / V  we reach is the one at which the region of blocked fluid changes from being 
flow like figure 3 ( c )  to being one like figure 3 ( d ) .  

/9 = y = +7. 
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FIGURE 11 (a, b) .  For legend me p. 333. 

6.3. Critical value of K/V when closed streamlines appear 
The method for establishing the change-over from flow like figure 3 (c )  to that like figure 
3(d) uses the asymptotic form (5.3). We fix 2 at some large (positive) value x,, and then 
find where a ~ / @  is zero. This is the point where a streamline touches the line x = xo 
without crossing it. The velocity in the y direction, a$/ax, is positive at this point 
when the flow islikefigure 3 (c)  (for the choice Y < 0, K > 0, zo > 0)and negative when 
it is like figure 3 (d). In fact, 

which has the same sign for all y, so we have immediately that the critical value is 

There are still no eddies in the flow, however, and we must increase K/V further to 
create them. 

a+/ax = -av(i + ~ K / ~ ) ~ 2 / ( x 2 + y 2 ) 2 + o ( x - - 8 ) ,  

K / Y  = -Ae1 = - 1.40. 

5.4. The appearance of eddies 
An eddy appears on the cylinder after - K / V  = 12000 and a free eddy after 
- K / V  = 17700. In figure 11 (c), the streamlines for -K/V = 33333 are shown ~ L I  

plotted by a computer. Note that far from the cylinder the asymptotic behaviour 0% 
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FIGURE 11. Shear flow over a cylinder touching a moving wall. (a) Sketch for - K / V  = 0.05. 
( b )  Sketch for - K / V  = 0.5005. (c) Computer plot for - K / V  = 33333. (d)  Schematic picture 
of flow for - K / V  = 33 333. The scales are distorted. The labelled streamlines are (1) $ = 0 ;  
(2) @ = - ~ V * / K  = -44.5 x lo-'", boundary of closed-streamline region; (3) @ = -3.1 x lo-', 
boundary of eddy. The numerical values of ~ were obtained by setting K = 1. 

the region of closed streamlines has not been resolved. The centre stagnation points 
have been marked by dots; the saddle point which marks the join between the free 
eddy and the large region of closed streamlines does not need to beidentifieclseparately. 
A schematic picture of the total flow is given in figure 11 ( d ) .  When deducing this 
picture, we must realize that the streamline that bounds the region of closed stream- 
lines is different from the streamline that bounds the free eddy. The stream function 
takes a value - 4 P/K on the former streamline, while on the latter it takes a value 
that must be determined numerically by finding the saddle stagnation point. 

We wish to acknowledge the many helpful suggestions made by Professor G .  K. 
Batchelor during this work and also the stimulating discussions held with Dr M. E. 
O'Neill. 
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